

An Integrated Solution for Secure Group Communication in WAN

Olivier Chevassut (OChevassut@lbl.gov)

Ernest Orlando Lawrence Berkeley National Laboratory
Université Catholique de Louvain

D. Agarwal, M. R. Thompson

Ernest Orlando Lawrence Berkeley National Laboratory

G. Tsudik

University of California, Irvine

Outline

- Introduction
- Goals
- Reliable group communication
- Why secure and reliable group communication is hard?
- Secure and reliable group communication
- Experimental results with a prototype implementation
- Conclusion

Introduction

- Use of the Internet for group communication has increased tremendously
- Security is becoming more important
 - protection from hackers
 - privacy of data
 - avoid a single point of failure (KDC)
- Provide distributed security
- Support
 - distributed applications
 - collaborative tools
 - replicated servers

Goals

- Provide reliable communication for collaborating groups spread across the Internet
 - simplify distributed application development
 - simplify communication between components in distributed applications
 - support flexible delivery capabilities to support a broad range of application needs (e.g., ordering)
- Provide a secure channel among the group members with security services similar to SSL
 - support confidentiality, authenticity, integrity
 - support access control based on membership authorization (individually enforced)
 - security services optional

Reliable Group Communication Protocols

- Any member of the group can send messages to the group
- Membership tracked with notification of membership changes
- Deliver messages at each member of the group in a consistent order
 - FIFO order, causal order, or total order
 - membership changes delivered in order
 - virtual synchrony and extended virtual synchrony (membership messages ordered with respect to data messages)
- Examples of systems: Isis, Totem, Ensemble, InterGroup

Why Secure and Reliable Group Communication is hard?

- Dynamic peer groups
 - relatively small (100s of members)
 - no hierarchy and no permanent centralized server
 - frequent membership changes
- Integrate distributed key management with group communication system
- Enable decentralized definition of authorization/ access control policies
- Enforce the policies as part of the key management
- Investigate group certification: how to issue, manage and revoke members' credentials

Secure and Reliable Group Communication Architecture

Security Components

- The key management is a group Diffie-Hellman key exchange protocol (Cliques toolkit)
 - a floating GC initiates the key exchange upon each (authorized) membership change
 - handle network partitioning and merging
- The access control protocol is based on user's credentials issued by an authorization server (Akenti)
 - collect policies and uses them to issue users' membership certificates
 - manage membership certificates (CRL)
- The flush protocol delineates membership in such way that a session key corresponds to a specific membership change

Security Layer on an example: a new users joins the group

- 1. **Authorization:** New user gets its membership certificate from Akenti to gain entry into key exchange
- 2. **Join multicast group**: New user submit a join request and gets back a membership change
- 3. Flush: Secure Layer broadcasts flush msg to indicate end of previous membership
- 4. Access control:
 - 4.1 New user broadcasts its membership certificate
 - 4.2 GC checks user's permission and, if authorized, initiates key exchange
- 5. **Key exchange**: GC, members establish a shared session key
- 6. **Deliver secure membership**: Secure Layer delivers secure membership to the application

Prototype Implementation

- Written in C
- Implementation intended to be portable
- Akenti provides authorization server
- Totem system provides reliable multicast layer
- Intend to have SSL security model

Experimental Results

 Performance of SL on a group merge with variablesize merging components. The main group size is constant at 15 members. (The cost of the flush is not included).

Conclusion and Further Work

- Threat model of Secure Layer
 - Protect against eavesdropping and spoofing
 - Denial of service still a problem (as with SSL) !!
- Current and on-going work
 - rigorous security analysis
 - interface definitions
 - porting Secure Layer to work with InterGroup (exhibit prototype at SC'01)
 - robustness and efficiency improvements